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1. Introduction

In the last decade, there has been substantial progress in the construction of semi-realistic,

standard-model-like string spectra using orientifolds. It was realized early on that orien-

tifolds are successfully tuned to allow bottom up constructions of the SM spectrum using

D-branes, [1, 2]. This has led to a separation of the problem of the construction of SM-like

vacua to that of a local problem (engineering the SM stack of branes) and global problems

(tadpole cancellation, K-theory constraints).

Two classes of approaches have been applied to the construction of orientifold vacua,

namely geometric and algebraic. The former starts with torus compactifications, to which

orbifold and orientifold projections are applied. The latter starts with some rational con-

formal field theory (RCFT) to which boundary and crosscap states are added. In general,

geometric constructions have the advantage that the moduli space of a solution is under

much better control, whereas the algebraic approach probes deeper into the landscape of

possibilities. The geometric approach has so far been applied mainly to Z2 × Z2, Z6 and

Z′
6 orientifolds (see [3, 4] and references therein).

The algebraic approach has been applied successfully to Gepner Models [5]. It gave the

richest class of SM-like vacua without chiral exotics [6]. Moreover it also gave the richest

class of possibilities of embedding the SM spectrum into Chan-Paton groups, [7]. For other

work on Gepner orientifolds see [8]–[13].

In principle, the geometric and algebraic (RCFT) approaches are not strictly separated.

Here we will consider a class of orientifold vacua that is accessible from both of these

directions, namely orientifolds of free- fermionic theories. From the algebraic point of

view, this class is obtained by tensoring 18 Ising models in order to obtain the required

central charge of 9, and imposing a world-sheet supersymmetry constraint. Geometrically,

it is known that such theories are closely related to Z2 × Z2 orientifolds. Our hope is, on

the one hand, to find a standard-model-like configuration that can be studied from both
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perspectives. On the other hand, such a configuration might allow an explicit computation

of couplings in a realistic example. While this is in principle possible for tensor products

of N = 2 minimal models (i.e. Gepner models), the required formalism is in practice only

available for the simplest RCFT, the Ising model, or for the free boson.

The fermionic construction of string compactifications was pioneered in the heterotic

context, [14]–[19]. It has proved a very practical tool and some of the phenomenologi-

cally most successful heterotic vacua were found in this context, [20]–[22]. It allowed for

an algorithmic search of vacua using computers, and a rather straightforward algorith-

mic computation of the superpotential that has been exploited up to eighth order in the

fields [23]. Although several promising heterotic vacua have been described more recently,

they have not yet reached the level of analysis done for some older cases where all F/D

flatness conditions were solved to high order and reasonable mass spectra were found. The

fermionic approach to the heterotic string has been revived recently, [24]–[26]. It has been

also used for statistical studies of the heterotic landscape, [27]–[30].

The art of free-fermion model building consists of simultaneously satisfying three re-

quirements: world-sheet supersymmetry, modular invariance and, if desired, space-time

supersymmetry. The first and the latter condition are essentially always satisfied in the

same way. World-sheet supersymmetry is imposed by using a realization of the world-sheet

supercurrent first presented in [14], leading to a “triplet constraint” on the free fermions,

which in the language of conformal field theory results in extending the chiral algebra by

certain currents of spin 3. Space-time supersymmetry always amounts to an extension of

the chiral algebra by a definite spin-1 current. However, there are various ways of deal-

ing with the third constraint, modular invariance. The most general one, proposed in [15]

and [16] is to derive conditions on the boundary conditions of fermions on non- contractible

cycles on the torus and higher genus surfaces (dealing with higher loop modular invariance

is not entirely straightforward, see however [31]). The second one is to consider the special

situation where free fermion and free boson constructions overlap, i.e. complex free fermion

pairs, in which case one may use the covariant lattice construction [32], and modular in-

variance at arbitrary genus can be derived using Lorentzian self-dual lattices. The third

method is to use simple current modifications of diagonal partition functions, in which case

consistency is guaranteed by general theorems [33]. The choice of method is limited by

the requirement of being able to perform an orientifold projection on the result. For the

first method this problem was studied in [34 – 36], but so far no fully general method has

been formulated. For the other two methods such a method does exist. As we shall see

in the next section, the simple current method in combinations with the requirement of

space-time supersymmetry does require bosonization of some, but not all of the fermions.

It is thus somewhat less general than the full free fermion construction, but more general

than a free boson construction, and it is, to the best of our knowledge, the most general

method currently available for free fermion orientifold constructions.

Although the Z2 × Z2 orbifolds relevant for the fermionic constructions have been

successful in the heterotic context the associated results for Z2 × Z2 orientifolds have

not been very encouraging so far, [37, 38]. It should however be appreciated that the

searches done so far concern a rather small set of possible Standard Model realizations.
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In [7] a minimally biased set of requirements was formulated, which allows many more

– although sometimes rather exotic – realizations of the Standard Model. Basically, the

only requirement (constraint) is that all quarks and leptons originate from a maximum of

four participating branes, and that the strong and weak gauge groups are not diagonally

embedded in multiple brane stacks. This allows for example arbitrary embeddings of the

weak hypercharge Y and quarks and leptons originating from rank two tensors (that were

classified), as well as various kinds of gauge unification. Here we will use exactly the same

set of requirements. For a more detailed description we refer to [7].

Our main conclusion regarding Standard Model spectra is that even with these much

broader search criteria, the set of free fermion orientifolds (and hence presumably the

Z2×Z2 orientifolds) is an extremely poor region in the orientifold landscape, in comparison

to orientifolds of interacting CFT’s, in particular of Gepner models. Since we use identical

search criteria in both cases this is a fair comparison. Indeed, in the present search we

did not find any solution to the tadpole conditions that contains the Standard Model

spectrum. Even keeping only the condition that the spectrum is right, before trying to

find a tadpole canceling hidden sector, we found just a handful of solutions of two different

chiral types (which, however, are remarkably simple and elegant). By contrast, in the case

of Gepner models both problems (finding the Standard Model spectrum with or without

tadpole cancellation) had a huge number of solutions: the number of distinct chiral types

in that search was more than 19000 [7], in comparison with just two in the present search.

This paper is organized as follows. In the next section we will describe the free fermion

CFT’s we are considering. In section three we discuss the closed sector of these CFT’s,

and present a list of Hodge numbers for comparison with other work. This list should in

particular be useful to determine the precise scope of our search. Since we do not have

any formalism to deal with free fermion orientifolds in full generality (i.e. for 18 unpaired

real fermions), it would be interesting to know the full list of Hodge data for the general

case, and compare with ours. Despite the more than twenty years of history of the subject,

apparently such a list is not available at present. Finally, in section four we will present

the Standard Model search results. The appendix contains a more detailed list of Hodge

data, including results on heterotic singlets and the number of boundary states.

2. CFT considerations

Our basic building block is the Ising CFT, which has three primaries 0, ψ and σ with

conformal weights 0, 1

2
and 1

16
respectively. Since its central charge is 1

2
one can tensor

18 copies in order to obtain a c = 9 “internal” CFT for a compactified type-II string

theory. Fermionic string theory consistency requires an N = 1 world-sheet supersymmetry.

Unlike the building blocks used in Gepner models, the N = 2 minimal models, the Ising

building blocks are not supersymmetric. But it has been known for a long time [14, 15,

18] how to realize world-sheet supersymmetry on a triplet of Ising models. The world

sheet supercurrent is simply the product of the three fermionic currents of the factors,

ψ1ψ2ψ3. Having realized supersymmetry on a triplet of fermions, we still have to impose

it on products of supersymmetric building blocks, so that their NS and R sectors are
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properly aligned. This is done, as in the case of Gepner models, by extending the chiral

algebra with all products of the supercurrents of the building blocks, including the space-

time NSR factor. These products are sometimes called “alignment currents”. They have

spin 3, because they are products of spin-3

2
of the separate factors, or the supercurrent

Xµ∂ψµ of the NSR factor of the theory. Extending the algebra by these currents implies

a projection on the spectrum, which in the special case of free fermionic models is called

the “triplet constraint”.

In the case of interest, one divides the 18 Ising models into six groups of three to

impose this constraint. The result is a fermionic string theory, which in general has a spec-

trum without space-time supersymmetry. To obtain space-time supersymmetry we have

to perform another extension of the chiral algebra, by a spin-1 current that is spinorial in

the NSR sector. The resulting projection on the spectrum is of course the GSO-projection.

This current consists of an NSR spin field with weight 5

8
combined with six Ising spin fields

σ, so that the total conformal weight is 1. Locality with the alignment currents requires

that there be an odd number of σ fields in each fermionic triplet, and then obviously the

only solution is to choose precisely one per triplet.

There is an important difference between the alignment currents and the space-time

supercurrent. The former consists entirely of simple currents, whereas the latter involves

the Ising field σ, which is not a simple current. The boundary state formalism we want to

use is the one of [39], which includes the most general available extension of earlier work of

the Rome group [40, 41], which in its turn is based on the classic paper by Cardy [42]. This

formalism produces the complete set of boundary states for all simple current extensions

of the chiral algebra. Unfortunately it cannot be applied to extensions that are not simple

current related, like the space-time supercurrent we encounter here.

But there is a way out of this in some cases. An Ising model corresponds to a real

(Majorana) free fermion. If we combine a pair of them into a complex free fermion, then the

spinor current turns out to be a simple current. Such a pairing implies that the two fermions

have the same boundary conditions on any cycle on any Riemann surface, and hence is

a restriction on the total number of possibilities. This can be achieved by extending the

chiral algebra of the theory with the spin-1 current ψiψj , where i and j label the fermions

to be paired. In order to use the simple current boundary state formalism we have to

group the six fermions participating in the space-time supercurrent into three pairs. This

yields then a type-II theory built out of three complex fermions (with standard, periodic

and anti- periodic boundary conditions) and twelve real fermions. We may consider pairing

some of the remaining real fermions as well. Such a pairing replaces the real fermion pair

by a free boson compactified on a circle of radius R2 = 4. The resulting CFT has central

charge 1 and may be thought of as the extrapolation of the Dn affine Lie algebras to n = 1.

Therefore we will denote it as D1. Hence the resulting c = 9 CFT is in general built out

of a combination of Ising models and free bosons. This should not be confused with the

case studied in [43], the 26 Gepner model. These models are also tensor products of free

fermions and free bosons, but in this case the bosons are on a circle of radius R2 = 8, and

are not straightforwardly related to free fermions.
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It may seem that there is no advantage to pairing two real fermions into a boson.

Normally, the pairing of fermions reduces the number of options for choosing fermion

boundary conditions, and hence the largest number of free-fermionic CFT’s is obtained by

leaving all boundary conditions free and independent. Indeed, the pairing of two fermions

amounts to an extension of the chiral algebra. In general, there are two ways of dealing

with such extensions. The first is to extend the chiral algebra directly, and work with

the reduced set of characters this implies. The second is to implement the extension as a

modular invariant partition function (MIPF), which has the form of a sum of the squares

of linear combinations of characters. These linear combinations correspond to the reduced

set of characters of the extended chiral algebra, and indeed this MIPF is identical to the

diagonal partition function of the extended theory. These two methods therefore yield

identical closed string sectors. We will refer to these two cases as a direct extension and

a MIPF extension henceforth. Although they yield identical closed strings, there is an

important difference between these two cases when open strings are considered, using the

formalism of [39]. In the case of a direct extension, only boundary states are allowed

that respect the extended symmetry, whereas in the case of a MIPF extension only the

original chiral algebra is required to be respected. Hence in that case there are boundary

states that respect the extension, but also additional ones that do not respect it. Therefore

it is in general advantageous to implement an extension as a MIPF, unless the extended

symmetries are themselves required for the physics of the problem under consideration. The

latter is true for world-sheet supersymmetry, sometimes for space-time supersymmetry, but

not for the pairing extension discussed above.

However, there is one exception to the foregoing if the formalism of [39] is used. This

exception occurs when the extended CFT has simple currents that result from fixed point

resolution. In that case working directly in the extended CFT allows us to use these

simple currents to build MIPFs that cannot be obtained as simple current MIPFs in the

unextended theory. In the unextended theory those MIPFs are exceptional invariants, to

which the general formalism of [39] does not apply, and for which ad-hoc formalisms must

be developed, as was done for example for the E-type invariants of SU(2) [44].

This can most easily be studied in the tensor product of two fermions. This has a

total of nine primaries, four of which are simple currents. If we extend the chiral algebra

by the spin-1 current ψ1ψ2, we get a new CFT with four primaries. Two of these are the

identity (0, 0) + (ψ,ψ) and the free fermion (0, ψ) + (ψ, 0). The other two originate from

the combination (σ, σ). This turns out to be a fixed point of the extension current ψ1ψ2,

which is resolved into two separate fields in the extended CFT. In rare cases it may happen

that such a resolved fixed point field becomes a simple current in the extended CFT, and

this is such a case. If we consider the MIPF obtained by using the simple current ψ1ψ2, we

get a total of six boundary states. Four of these respect the extended symmetry, and two

of them do not. If we work instead directly in the extended CFT, i.e. D1, we only see the

four boundary states that respect the extension. So here the MIPF has the advantage over

the direct extension. To see the opposite, consider 16 free fermions. We can pair these,

using a direct extension, into 8 free bosons. This CFT, (D1)
8, has a simple current MIPF

corresponding to D8, which is also a simple current MIPF of (Ising)16, but it also has a
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MIPF corresponding to E8, which is not a simple current MIPF of (Ising)16. Although we

would not be able to obtain this E8 theory with simple current MIPFs of only Ising models,

it can be obtained with the method we use in the present paper, namely combinations of

Ising models and free bosons. In fact, although we would expect that examples exist which

can only be obtained using the full free fermion construction, and not by means of simple

currents in combinations of free boson and free fermion CFT’s, we are not aware of any

such example.

The conclusion is that to maximize the number of cases we are able to consider with

the formalism at our disposal, we should consider all possible options for pairings of the

12 remaining free fermions. The starting point is the completely unpaired case. This is a

CFT that is a tensor product of a four-dimensional NSR model, three free bosons φ labeled

a, b, c, and twelve free fermions ψ labeled 1, . . . , 12. The chiral algebra is extended by the

following alignment currents

∂Xµψ
µeiφaψ1ψ2 ∂Xµψ

µe−iφaψ3ψ4 (2.1)

plus four more with labels (+b, 5, 6), (−b, 7, 8), (+c, 9, 10), (−c, 11, 12), where + and − in-

dicate the signs in the exponent. In (2.1) ψµ are the NSR fermions. The space-time

supersymmetry current is Sασaσbσc, where Sα denote the NSR spin fields combined with

the usual contribution from the bosonized superghosts, and σa, σb and σc are theD1 spinors.

The latter three are simple currents, and for all practical purposes, so is the NSR spin field.

The nicest way of dealing with it explicitly as a simple current is to use the covariant lattice

method of [32], where it becomes a spinor of D5. Note that there are two choices available

for each of the factors of the space-time supersymmetry current, but all these choices are

equivalent.

All other options are obtained from this starting point by adding pairing currents ψiψj ,

with i, j = 1, . . . 12. These pairing currents are always local with respect to the alignment

currents, the space-time supersymmetry current and with respect to each other, so they

can be added without any constraint. However, we have to close the algebra after adding

any such current, which may lead to undesirable consequences.

Let us first consider the special case where we only add pairing currents for the first four

fermions. If we add just one pairing current, the distinct possibilities (taking permutations

into account ) are ψ1ψ2 and ψ1ψ3. The former choice, when combined with (2.1), implies

an extension of the chiral algebra with ∂Xµψ
µeiφa , which means that the four-dimensional

NSR model is extended to a six-dimensional one. Hence all theories we get this way are

torus compactifications of a six-dimensional theory. This is of no interest, since in such

a theory all characters are non-chiral in space-time and hence there is no possibility for

obtaining the Standard Model from boundary states.1 If we add the current ψ1ψ3, then

closure of the algebra with the two currents in (2.1) implies that also the combination

ψ2ψ4 is in the chiral algebra. Hence there are just two options that are of interest, namely

no pairing, and the pairing (1, 3)(2, 4).

1Note that we are considering direct extensions here. If, on the other hand, we implement the extension

by ψ1ψ2 as a MIPF, there is a possibility of having a six-dimensional bulk CFT but space-time chiral

boundary states that do not respect the bulk symmetry.
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One may continue this procedure to eight fermions. Obvious solutions are no pairings,

two pairings (either (1,3)(2,4) or (5,7)(6,8), which are equivalent under permutation), or

four pairings, (1,3)(2,4)(5,7)(6,8). But in addition to these three distinct possibilities one

may also consider pairings between the first and the second group of four. Here one also

encounters some possibilities that are of no interest. For example the pairing (1, 5)(1, 6) has

the effect of combining the three fermions (1,5,6) into SO(3). But this has no advantages,

because SO(3) has no simple currents on top of those of the original free fermions. Similarly,

extensions to other SO(N) groups with N ≥ 3 need not be considered. Taking this, as

well as all permutations, into account, we arrive at a total of 11 possibilities, including the

three described above.

We proceed in a similar way with the case of twelve fermions. Here we obtain a

total of 62 distinct cases, including all combinations of four and eight fermion sub-cases.

There is some overcounting in this set, because it turns out that some purely free boson

(complex fermion) cases are extensions of others by currents of spin two or three, which

is clearly a direct extension that has no advantages over a MIPF extension. There may

be other such “useless” extensions for mixtures of real and complex fermions, but there

is an important caveat here: there are examples that look like extensions of cases that

are not on the list of 62 themselves. We found that if this happens the “de-extended”

combination does not have a valid world-sheet supersymmetry realization, even though the

extended combination does. This can happen because the aforementioned spin two or three

current may be combinations of pairing currents and world-sheet supersymmetry currents,

and removing it may therefore destroy world-sheet supersymmetry. Since the superfluous

cases are anyway among the easiest to deal with in terms of computer time, it was not

worthwhile to eliminate them.

3. The closed string sector and the associated geometry

As discussed earlier, we are utilizing a purely algebraic approach in order to construct

these models. The fact that there are no explicit geometric considerations that enter into

the model construction method makes examining the resulting compactification geometries

interesting. The primary constraints on what compactification geometries result stem only

from the CFT considerations discussed in section 2 and stringy consistency conditions.

We shall start our discussion of the compactification geometries at the “global” level by

discussing all of the compactification geometries found.

In the course of this study, we found thirty-two different compactification manifolds.

These manifolds are differentiated solely on the basis of their Hodge numbers (namely h11

and h12) and the amount of space-time supersymmetry preserved. The full list of manifolds

is presented on table 1. As the structure of the table suggests, we find that each model has

a mirror, but we shall defer a discussion of mirror symmetry until later. The table does

illustrate that we find a wide variety of different Hodge numbers and find that within this

set of manifolds there is a large variation in the amount of supersymmetry preserved.

As discussed in section 2, our study consisted of sixty-two different model classes. The

manifolds listed on table 1, were distributed amongst these different model classes. We shall
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Hodge Numbers Amount of d = 4 SUSY

(h11, h12) N = 1 N = 2 N = 4

(51,3) and (3,51) X

(31,7) and (7,31) X

(27,3) and (3,27) X

(25,1) and (1,25) X

(21,9) and (9,21) X

(19,7) and (7,19) X

(17,5) and (5,17) X

(15,3) and (3,15) X

(12,6) and (6,12) X

(21,21) X

(19,19) X

(15,15) X

(13,13) X X

(11,11) X

(9,9) X X X

(7,7) X

(5,5) X X

(3,3) X

(1,1) X

Table 1: The compactification manifolds found in this study along with the amount of space-time

supersymmetry that they preserve.

now examine how these manifolds were distributed amongst the different model classes.

This can give some idea how generically these manifolds may be found in this context.

There is a large variation between different compactification manifolds with respect to the

number of model classes that realize them. The manifold preserving N = 4 supersymmetry,

which most likely corresponds to a toroidal compactification, is found in every single model

class. There were also two manifolds preserving N = 2 supersymmetry (namely (h11, h12) =

(13, 13), (5, 5)) which were each found in over fifty of the model classes. There are many

model classes which only realize these three common manifolds. On the other extreme,

there are three manifolds, (N = 1 (25, 1), (1, 25), (13, 13)) that are only realized in one

model class each. These manifolds only are found in the case of the extension only involving

powers of D1 (that is, all fermions paired). Most of the manifolds are realized in a relatively

small number of model classes with twenty-four of the manifolds only being realized in less

than a third of the available model classes.

Another quantity that can be utilized to differentiate between compactification mani-

folds is the number of so-called “heterotic singlets”. The model construction method uti-

lized allows for the counting of the number of massless states which transform as singlets

– 8 –
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under an E6 factor within the chiral algebra.2 The name “heterotic singlets” derives from

the following fact: any type-II partition function with (1,1) space-time supersymmetry can

be uniquely mapped to a heterotic vacuum with N = 1 space-time susy with E6 symmetry

via a modular invariance preserving map first described in [45, 32] and applied to map

type-II strings to heterotic ones in [5]. (this map is sometimes called the “bosonic string

map” or the “Gepner map”). In this related heterotic ground state, there is a number of

singlets under the E6 group. Their number depends on the topology of the CY manifold

and its tangent bundle, and is a useful quantity for distinguishing MIPFs.

Using this information along with the Hodge numbers and the amount of preserved

space-time supersymmetry to differentiate between compactification manifolds, we find

that there were 421 different compactification manifolds. The full list of these manifolds

is in appendix A. In addition, we find that 58 of these manifolds exhibit extended su-

persymmetry. There is a single manifold which preserves N = 4 supersymmetry. When

only hodge numbers are utilized to differentiate manifolds, it was relatively common to

find the same set of hodge numbers and differing amounts of preserved supersymmetry.

When the hodge numbers and the number of heterotic singlets are taken into account, it

is rare that two manifolds appear identical at this level and yet preserve differing amounts

of space-time supersymmetry.This was observed in five cases, which is about one percent

of the total sample.

As discussed in section 2, there were sixty-two different model classes considered in this

study. The 421 distinct manifolds were distributed amongst these model classes. Ninety

of these manifolds were found in exactly one model class. This represents a factor of

thirty increase from the earlier case of three manifolds being found in only one model class.

Interestingly, only three of the thirty-two manifolds are not represented in these ninety.

They are N = 4 (9, 9), N = 2 (21, 21) and (1, 1). There are again three very common

manifolds. The N = 4 (9, 9) is again found in every model class. The other two common

manifolds from earlier remain very common. This suggests that these three manifolds

represent very symmetric cases. This stems from the fact that they are both very common

and the extra differentiation into singlets did not seem to have an effect upon their ubiquity.

The general behavior for the rest of the manifolds is that they are found in a very limited

number of different model classes with more than three quarters of all of the manifolds

being found in five or fewer different model classes.

As the entries in table 1 suggest, this method of constructing models seems to preserve

mirror symmetry in the sense that, for each model which appears in the set, the mirror

is also in the set. This check was performed at the level of the topological data for the

models (the hodge numbers and the number of singlets). Although the full spectra for

all models was calculated, we did not explicitly construct a map from one model to the

proposed mirror. With that warning in mind, we shall examine the appearance of mirror

symmetry within this set of models.

We shall start at the level of looking at the entire set of realizable models. This is

2For toroidal compactifications, the E6 factor is enhanced to an E8. Thus, for these compactifications

we count the number of E8 singlets instead of E6 singlets. For this study, this only affects the manifolds

preserving N = 4 supersymmetry.
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the broadest level possible, as we do not worry about from which model class each model

comes from. At this level, we define the mirror of a model to be an identical model with

the appropriately flipped Hodge numbers (e.g. (h11, h12) → (h12, h11), the same amount of

supersymmetry preserved, and the same number of singlets. Using this definition, we find

that every model has an appropriate mirror within the model set. This comes with the

caveat that we allow for the situation that a model is actually invariant under a mirror

transformation. That is, we allow manifolds with h12 = h11 to have odd multiplicities. This

occurs rarely, but it does occur. In addition, we can consider each model class separately.

Mirror symmetry even holds using this more stringent division.

In addition to considering Hodge numbers and the number of heterotic singlets, one

can also differentiate manifolds by considering how many boundary states are consistent

with the model. We shall not discuss this very much except to note that, the apparent

mirror symmetry is broken with models where h11 6= h12. There exist models for which

no corresponding mirror with the same number of boundary states, number of singlets,

and appropriate Hodge numbers is in the set. This does not come as a surprise, since in

the similar case of T-duality for circle compactifications, the number of boundary states

also is not preserved by the duality: for radius R2 = 2N , the T-duals have 2 or 2N

boundary states.

Thus far, we have only discussed what compactification manifolds we have found in

our scan over the full sixty-two model classes. However, it is also potentially interesting to

examine what is the minimum set of these sixty-two model classes for which every single

compactification manifold is contained. In other words, if one just wanted to classify all of

the manifolds realizable in this specific construction, what is the minimum set of extensions

that must be considered? Clearly, this question depends on how one differentiates between

compactification manifolds. If we simply utilize Hodge numbers, then we would find every

distinct manifold considering only two model classes. These are, in some sense, the extreme

cases, which are every fermion paired and every fermion unpaired. However, if we consider

the singlet data as well as Hodge numbers then we find that although we increase the

number of distinct manifolds from 32 to 421, we only require four different model classes

in order to find every manifold. In fact, if we only took the two model classes required in

the earlier differentiation method we would only miss four manifolds. Thus, the two extra

model classes only provide these few missing manifolds. This is not to say that searching

through the sixty-two different model classes for the Standard Model would be fruitless

only that all of the different compactification manifolds will have been found after only

searching through these four different model classes.

We would also like to compare our results to other methods. There are two related

questions in this context. The first is how our construction algorithm is related to the

traditional fermionic construction, [15, 18]. Although this search was never done to our

knowledge in the IIB string we can argue that our vacua fall within the conventional

definition of fermionic constructions as these were described in [15, 18]. The reason is that

the simple current extension technique we use to generate MIPFs from a reference MIPF,

is preserving the fermionic nature of MIPFs. More precisely if it acts on a MIPF that is a

sesquilinear form of θ-functions or Ising characters, it still gives MIPFs that can be written
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as sesquilinear forms of θ-functions or Ising characters. Therefore the IIB vacua described

here are a large subset of all fermionic IIB vacua.

Another set of vacua which fermionic theories are usually compared to are the vacua

resulting from Z2 × Z2 orbifolds. There even seems to be a “folk theorem” stating that

the two sets are equivalent.3 The second question therefore is to what extent this is true.

A first attempt was made to classify all Z2 × Z2 orbifolds in [46]. This task was recently

completed in [47]. In that paper, the authors classified all Z2×Z2 orbifold actions on (T 2)3

including shifts and discrete torsion. The list of Hodge data obtained matches our table 1

with one exception: our list contains in addition the Hodge numbers (25,1) and its mirror.

It is not exactly yet clear what is the origin of this mismatch. It is expected however that

the simple current method is related to the orbifold method (or its inverse). In particular,

the (25,1) models in our list are constructed from a Z4 simple current extension and it is

plausible that this is the reason it is not found in [47]. This seems to suggest that the folk

theorem stating that fermionic constructions are equivalent to Z2 ×Z2 seems to fail. This

observation requires further study.

It is noteworthy that we have found one Hodge number pair in addition to those of

Z2 × Z2 orbifolds, but that on the other hand none of the Hodge number pairs of [47] is

missing from our list. This seems to suggest that either we are covering most, if not all, free-

fermionic theories, or the aforementioned folk theorem is not even close to being correct.

To check this, it would be very interesting to have a complete list of Hodge numbers and

heterotic singlets for all free fermionic type-IIB theories.

A partial list of closed string data for Z2 ×Z2 orbifolds appears in [48]. These authors

do not only present the Hodge numbers, but also the number of singlets and additional

vector bosons in heterotic strings. The latter number is two in all cases, in other words

the heterotic gauge group is E6 ×E8 ×U(1)2. Although we have not included information

on the number of U(1)’s in this paper, we did compute this information, so that we can

compare results. In our construction, two is the lowest number of additional gauge bosons

encountered, and it only occurs in the case of twelve unpaired free fermions (which is easily

understandable, since any pairing introduces an additional U(1) factor). Of the eight

spectra published in [48], three match exactly with ours (namely (3,51,252), (3,27,132)

and (7,31,172) where we have used the notation (h11, h12,number of heterotic singlets)),

whereas the five others have a remarkably small number of singlets outside our range. In

addition, four out of seven cases with h11 = h12 match with ours (these were not published

in [48], but communicated to us by the authors). It is not clear to us if all of the spectra

of [48] can be obtained with the original free fermionic construction of [14, 15], but if

they can, then this would be the first examples were the mixed fermion/boson simple

current construction we use here misses some case. On the other hand, if we impose the

condition that the number of additional U(1)’s is exactly 2, we get a total of 83 distinct

(h11, h12, singlets) cases, compared to a total of 15 in [48]. There are also some differences

3This equivalence is between free fermionic theories and special points in the moduli spaces of Z2 × Z2

orbifolds. The precise statement of such a theorem could be that for every free fermionic type-IIB theory

there is a point in the moduli space of a type-IIB Z2×Z2 orbifold matching it, while every type-IIB Z2×Z2

orbifold has at least one point in its moduli space that can be described by free fermions.
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in cases with extended supersymmetry, and furthermore the (25,1) models absent in [47]

are also absent in [48]. This is not entirely surprising, since our (25,1) spectra have 8

additional U(1)’s and are apparently outside the scope of [48]. All of this just underscores

the need for a systematic comparison of the different approaches.

4. Standard Model search

One of the main goals of this study is to find a string vacuum with a low-energy limit

that consists of, at least, a semi-realistic supersymmetric version of the Standard Model.4

Such a vacuum could be studied from both the geometric and the algebraic perspectives.

In particular, its realization as a free-fermion CFT will make the process of evaluating

the effective action simpler and amenable to an algorithmic/computer treatment. This

is necessary for a detailed scan of the region in the neighborhood of the vacuum found,

as electroweak symmetry breaking, supersymmetry breaking mass generation and other

important effects are expected to be triggered by the local effective potential.

The search methodology utilized in the present study was detailed in ref. [7]. The

methodology is an implementation of the bottom-up approach [1, 2], implemented in the

context of RCFT orientifolds [39] and amended with an algorithm of tadpole cancella-

tion [6]. This procedure first constructs a top-down spectrum that matches the (M)SSM

by utilizing the BCFT boundary states. This is what we call a “top-down solution”. Such

a solution can be promoted to a bona-fide string vacuum by solving the tadpole conditions.

This is achieved when possible by adding an appropriate “hidden sector”. Since our use of

the terminology “top-down” may be confusing, let us summarize the three distinct classes

of spectra that enter the discussion. A “bottom-up configuration” is any combination of

unitary, orthogonal or symplectic gauge groups with bi-fundamental or rank-2 tensor mat-

ter that is free of all relevant anomalies, and which might therefore be realized with a set of

intersecting branes or a set of boundary states. If such a realization is found in an explicit

model, we speak of a “top-down solution”. If in addition a tadpole canceling hidden sector

can be found (or if no hidden sector is needed to cancel all tadpoles), we call the result

a “string vacuum”. In principle, after we have found a vacuum that satisfies both the

top-down and the bottom-up constraints we should further check to ensure that there are

no uncanceled K-theory charges.

We will describe now this procedure in a bit more detail. Full details can be found

in [7] where the search criteria were developed and where a general characterization of hy-

percharge embeddings was found. The first step in the search consists of dividing the full

set of boundary states (branes) present in the model into observable and hidden sectors.

The observable sector is defined as the set of branes where Standard Model matter resides.

This sector also gives rise to all of the Standard Model gauge symmetries. There are some

4It has become customary to refer to such spectra by the acronym “MSSM” although they usually

contain additional non-chiral particles that make the first “M” questionable. On the other hand, the

spectra one gets in algebraic constructions are special points in a flat moduli space. A real comparison with

the MSSM spectrum can only be made after stabilising moduli. For that reason it would be premature to

reject algebraically constructed spectra if they contain non-chiral exotics.

– 12 –



J
H
E
P
0
2
(
2
0
0
9
)
0
3
0

criteria that can be placed only on the observable sector. These include the requirement

that the SU(3) and SU(2) gauge symmetries each arise from single stacks of branes. This

eliminates the possibility that these groups arise from the diagonal combination of two

branes. We do not make any further assumptions about the symmetry breaking mecha-

nism if these gauge symmetries are embedded in larger groups. Hypercharge is allowed to

arise from any massless linear combination of U(1) factors arising from observable sector

stacks of branes. Next we require that there be the matter content consistent with the

three generation MSSM present in the observable sector, and no chiral exotics (see below).

Furthermore we require that the observable sector consists of no more than four distinct

stacks of branes, in order to keep the search manageable. With more stacks of branes, the

number of ways of embedding the hypercharge Y increases drastically, and one may also

obtain quarks and leptons from several distinct bi-fundamentals. On the other hand, the

number of options for chiral exotics increases. It is not clear which of these competing

effects dominates.

As our definition of what constitutes a chiral exotic may differ a bit from that usually

used in the literature, we shall now define chiral exotics for these models. We do not put

any constraints on matter that is not charged under the observable Chan-Paton group, i.e.

we allow for any amount of chiral matter that is limited to the hidden sector. If the chiral

matter is in the observable sector we require it either be part of the MSSM spectrum or at

least non-chiral with respect to all of the Standard Model gauge groups. Apart from the

standard three families of quarks, charged leptons and left-handed neutrinos, this definition

does allow a few more particles that are chiral with respect to the observable part of the

Chan-Paton group.5 It allows for right-handed neutrinos that are chiral with respect to

an extension of the Standard Model (the most common case being a broken or unbroken

gauged B−L symmetry). It also allows Higgs pair candidates that are chiral with respect

to a U(2) group, which contains SU(2)Weak (in this case the additional U(1) is broken

by axion mixing). Among the less desirable particles in this category are mirror pairs of

quarks and leptons that are chiral with respect to the Chan-Paton group, but non-chiral

with respect to the Standard Model gauge group. Note that although the latter particles

are exotic and chiral with respect to the full Chan-Paton group, we do not call them “chiral

exotics” because they are not chiral with respect to SU(3) × SU(2) × U(1).

Apart from chiral observable and chiral hidden matter, a third category is chiral

observable-hidden matter. Such matter may be subject to symmetry breaking or con-

finement in the hidden sector, and is therefore not necessarily fatal. Furthermore, there

are several kinds of chiral observable-hidden matter that nevertheless fulfill the require-

ments stated in the previous paragraph, i.e. that they are non-chiral with respect to the

Standard Model gauge group. Nevertheless, in the previous searches [6] and [7] chiral

observable-hidden matter was not accepted. In other words, boundary states with a chi-

ral intersection with the Standard Model branes were given Chan-Paton multiplicity zero.

This has the advantage of limiting the scope of the search to the a priori most attractive

5The precise definition of the “observable part of the Chan-Paton group” is those factors of the original

Chan-Paton group that contain parts of SU(3)×SU(2)×U(1), before taking breaking through axion mixing

into account.
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models. In a few cases where this requirement was lifted, this resulted in an explosion

of the number of solutions by several orders of magnitude. In situations where the main

search result is negative, it is natural to remove this requirement. This is indeed what we

have done in the present paper.

Because of the existence of several possible definitions of chiral exotics, we wish to

emphasize that most spectra obtained in previous searches are free of chiral exotics, for

any definition of the latter. For example, apart from three chiral right-handed neutrinos

that are chiral with respect to B−L, but not “exotic” by any standard, about 85% of the

about 200.000 spectra collected in [6] have no extra chiral matter at all, 12.5% has a chiral

hidden sector, and about 2% have a U(2) chiral Higgs pair and/or chiral mirror pairs.

Utilizing the criteria outlined above, we found that only 1 of the 62 model classes

yielded any top-down solutions. This model class was the case of all fermions paired (that is,

simple current extensions only involving powers ofD1), or in other words a compactification

that can be realized entirely using free bosons and self-dual lattices [32]. No other model

classes yielded models that satisfied these criteria. The search was done without any

constraint on the number of boundary states. In [7] an upper limit of 1750 was used. In

the present case the number of boundary states goes up to 3040, but in most cases already

the first step in the search (looking for three quark doublets) failed. Thus because of lack

of results, larger numbers became accessible.

We did have to impose a limitation on the scope of the MIPF search. The most difficult

case, twelve real and three complex fermions, has 534700 MIPFs. As explained earlier, not

all of these are distinct. The vast majority of this large number comes from the discrete

torsion signs of large simple current subgroups. Since the simple current group in this case

is (Z2)
7, the largest subgroup, the simple current group itself, admits 21 such signs (they

form an anti-symmetric 7 × 7 matrix [49]). This leads to 221 possibilities, still subject to

identification by permutations. It turns out that these in principle distinct MIPFs produce

very few distinct Hodge numbers. For this reason we have searched the MIPFs originating

from large simple current subgroups by taking a random sample of 100 discrete torsion

sign choices per subgroup.6

The top-down solutions we found were of a chiral type already encountered in [7] for

Gepner models. The simplest of them is a Pati-Salam type of spectrum.The Chan-Paton

group is U(4) × U(2) × U(2), with all U(1) symmetries broken by axion mixing (note that

Y is the U(4) generator 1

6
(1, 1, 1,−3)). The spectrum consists of the following left-handed

particles (with “V ” for vector and “V ∗” for conjugate vector)

2 × (V, V, 0)

(V, V ∗, 0)

2 × (V ∗, 0, V ∗)

(V ∗, 0, V )

2 × (0, V, V ∗)

6This kind of sampling was only done for the Standard Model search. The Hodge number scan was done

completely, and gave rise to many degeneracies for a given simple current subgroup.
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which represent respectively three SU(4)-unified quark and lepton doublets, three SU(4)

unified anti-quark and charged lepton singlets, and 2 particles with the quantum numbers

of a MSSM Higgs pair. Therefore, apart from the U(4) baryon-lepton unification and the

extra Higgs pair this is precisely the MSSM spectrum. We emphasize that the multiplicities

given above are the exact multiplicities of left-handed particles, and not the net number

(left minus right). Hence the additional Higgs pair is the only exotic, there are no mirror

quarks or leptons whatsoever, not even fully non-chiral ones. This is extremely rare, and

we do no know any such example in the entire set of spectra obtained from Gepner models.7

The second chiral type we found is essentially the same as the foregoing, but with the

SU(4) stack split in three baryon and one lepton stack. This spectrum has one additional

exotic, a non-chiral set of leptoquarks originating from the gaugino corresponding to the

broken generators of SU(4).

However, even after relaxing the observable-hidden chirality constraint, as explained

above, we were unable to obtain a solution to the tadpole conditions for any of these models.

As an extra check on the top-down model search algorithm, we relaxed the requirement

that there be exactly three generations and found numerous examples of one and two

generation models in many different model classes. We tried this on a total of 65 MIPFs,

a small fraction of the total, and found top-down configurations in 62 of them. Tadpole

solution were found for some one-family models, but not for two-family models. Due to the

limited number of cases considered, no conclusions with regard to family statistics should

be drawn from these observations. But this does reinforce the finding that there are only

very few models with three generations in the entire set of models constructed. Despite

the need for statistical sampling mentioned above, it seems extremely unlikely to us that

any three family models were missed.
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A. Full list of manifolds

The following table contains the full list of compactification manifolds found during this

7Note however that the available spectra in the Gepner model search, [6], are free of tadpoles; there is

no database of exact spectra of top-down solutions prior to tadpole cancellation. The search performed

in [7] focused more on chiral types than on tadpole solutions, but the chiral types were collected modulo

non-chiral exotics, so that there is no such database in that case either.
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search. We have organized the table in such a way as to include the Hodge numbers the

number of E6 singlets (listed as heterotic singlets on the table), the amount of space-

time supersymmetry preserved, and the number of boundary states. The boundary state

information includes the following values: the maximum value that the number of boundary

states took, the minimum value for the number of boundary states, and the total number of

different values for the number of boundary states. We note that the values for the number

of boundary are determined solely from chiral algebra considerations and we expect most

of the configurations to not exhibit tadpole cancelation. For a more complete discussion

of all of this information see ref. [6].

Hodge numbers Heterotic d = 4 Boundary States

(h11, h12) Singlets Susy Maximum Minimum Distinct

(51, 3) 258 N = 1 2048 32 14

(51, 3) 256 N = 1 2272 160 16

(51, 3) 254 N = 1 2528 448 12

(51, 3) 252 N = 1 3040 2048 5

(3, 51) 258 N = 1 1280 32 11

(3, 51) 256 N = 1 1504 128 15

(3, 51) 254 N = 1 1760 416 12

(3, 51) 252 N = 1 2272 1280 5

(31, 7) 254 N = 1 1216 32 20

(31, 7) 252 N = 1 1376 128 21

(31, 7) 230 N = 1 1376 160 18

(31, 7) 228 N = 1 1552 496 15

(31, 7) 209 N = 1 1600 152 23

(31, 7) 208 N = 1 1376 128 22

(31, 7) 207 N = 1 1952 592 15

(31, 7) 206 N = 1 1552 416 17

(31, 7) 190 N = 1 1600 320 16

(31, 7) 188 N = 1 1952 1312 10

(31, 7) 174 N = 1 1600 256 22

(31, 7) 172 N = 1 1952 1088 12

(7, 31) 254 N = 1 704 32 14

(7, 31) 252 N = 1 992 128 13

(7, 31) 230 N = 1 992 128 16

(7, 31) 228 N = 1 1168 416 11

(7, 31) 209 N = 1 1216 152 21

(7, 31) 208 N = 1 992 64 18

(7, 31) 207 N = 1 1568 592 13

(7, 31) 206 N = 1 1168 256 14

(7, 31) 190 N = 1 1216 304 14

(7, 31) 188 N = 1 1568 928 10

(Table 2) continued on next page
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(Table 2) continued from previous page

Hodge numbers Heterotic d = 4 Boundary States

(h11, h12) Singlets Susy Maximum Minimum Distinct

(7, 31) 174 N = 1 1216 224 18

(7, 31) 172 N = 1 1568 704 12

(27, 3) 270 N = 1 448 8 16

(27, 3) 240 N = 1 1024 40 16

(27, 3) 234 N = 1 1024 32 15

(27, 3) 216 N = 1 1184 128 16

(27, 3) 213 N = 1 1184 110 18

(27, 3) 212 N = 1 1024 128 12

(27, 3) 200 N = 1 1184 128 21

(27, 3) 198 N = 1 1360 392 13

(27, 3) 189 N = 1 1504 172 18

(27, 3) 188 N = 1 1184 496 8

(27, 3) 182 N = 1 1360 304 23

(27, 3) 180 N = 1 1664 1312 6

(27, 3) 167 N = 1 1504 440 16

(27, 3) 166 N = 1 1360 224 27

(27, 3) 164 N = 1 1664 1168 11

(27, 3) 148 N = 1 1664 992 15

(27, 3) 132 N = 1 1664 896 16

(3, 27) 270 N = 1 256 8 12

(3, 27) 240 N = 1 608 32 14

(3, 27) 234 N = 1 448 32 9

(3, 27) 216 N = 1 800 128 11

(3, 27) 213 N = 1 800 86 18

(3, 27) 212 N = 1 320 64 8

(3, 27) 200 N = 1 800 64 12

(3, 27) 198 N = 1 976 392 10

(3, 27) 189 N = 1 1120 172 18

(3, 27) 188 N = 1 800 304 7

(3, 27) 182 N = 1 976 256 17

(3, 27) 180 N = 1 1280 928 6

(3, 27) 167 N = 1 1120 344 16

(3, 27) 166 N = 1 976 128 18

(3, 27) 164 N = 1 1280 784 11

(3, 27) 148 N = 1 1280 608 15

(3, 27) 132 N = 1 1280 608 15

(25, 1) 230 N = 1 256 32 4

(1, 25) 230 N = 1 64 32 2

(21, 9) 172 N = 1 1184 64 26

(Table 2) continued on next page
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(Table 2) continued from previous page

Hodge numbers Heterotic d = 4 Boundary States

(h11, h12) Singlets Susy Maximum Minimum Distinct

(21, 9) 170 N = 1 1504 160 19

(21, 9) 169 N = 1 1120 152 22

(21, 9) 167 N = 1 1312 496 13

(21, 9) 166 N = 1 1184 304 12

(21, 9) 164 N = 1 1504 1088 8

(9, 21) 172 N = 1 992 32 23

(9, 21) 170 N = 1 1312 160 18

(9, 21) 169 N = 1 928 124 21

(9, 21) 167 N = 1 1120 400 13

(9, 21) 166 N = 1 992 296 10

(9, 21) 164 N = 1 1312 896 8

(19, 7) 208 N = 1 832 128 17

(19, 7) 202 N = 1 832 128 20

(19, 7) 196 N = 1 832 128 13

(19, 7) 187 N = 1 992 172 18

(19, 7) 184 N = 1 992 392 14

(19, 7) 181 N = 1 992 152 21

(19, 7) 178 N = 1 992 392 11

(19, 7) 168 N = 1 992 304 20

(19, 7) 166 N = 1 1264 196 21

(19, 7) 163 N = 1 1264 448 15

(19, 7) 162 N = 1 992 304 18

(19, 7) 160 N = 1 1264 1072 5

(19, 7) 147 N = 1 1264 392 23

(19, 7) 144 N = 1 1264 896 9

(19, 7) 128 N = 1 1264 736 12

(7, 19) 208 N = 1 320 128 6

(7, 19) 202 N = 1 608 64 14

(7, 19) 196 N = 1 608 64 10

(7, 19) 187 N = 1 800 172 10

(7, 19) 184 N = 1 800 304 11

(7, 19) 181 N = 1 800 152 17

(7, 19) 178 N = 1 800 304 9

(7, 19) 168 N = 1 800 224 15

(7, 19) 166 N = 1 1072 196 16

(7, 19) 163 N = 1 1072 392 13

(7, 19) 162 N = 1 800 224 14

(7, 19) 160 N = 1 1072 880 5

(7, 19) 147 N = 1 1072 304 20

(Table 2) continued on next page
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(Table 2) continued from previous page

Hodge numbers Heterotic d = 4 Boundary States

(h11, h12) Singlets Susy Maximum Minimum Distinct

(7, 19) 144 N = 1 1072 704 9

(7, 19) 128 N = 1 1072 544 12

(17, 5) 238 N = 1 128 32 3

(17, 5) 176 N = 1 832 32 25

(17, 5) 173 N = 1 800 86 18

(17, 5) 167 N = 1 800 172 10

(17, 5) 164 N = 1 832 32 25

(17, 5) 161 N = 1 896 124 33

(17, 5) 158 N = 1 896 296 18

(17, 5) 152 N = 1 1088 64 30

(17, 5) 149 N = 1 992 152 25

(17, 5) 146 N = 1 1088 160 31

(17, 5) 143 N = 1 1120 344 27

(17, 5) 140 N = 1 1120 896 7

(17, 5) 130 N = 1 1088 128 24

(17, 5) 127 N = 1 1120 304 31

(17, 5) 124 N = 1 1120 736 12

(5, 17) 238 N = 1 128 32 3

(5, 17) 176 N = 1 640 32 15

(5, 17) 173 N = 1 608 62 17

(5, 17) 167 N = 1 608 124 9

(5, 17) 164 N = 1 640 32 19

(5, 17) 161 N = 1 704 124 20

(5, 17) 158 N = 1 704 224 14

(5, 17) 152 N = 1 896 64 25

(5, 17) 149 N = 1 800 152 21

(5, 17) 146 N = 1 896 128 23

(5, 17) 143 N = 1 928 304 20

(5, 17) 140 N = 1 928 704 7

(5, 17) 130 N = 1 896 64 20

(5, 17) 127 N = 1 928 248 26

(5, 17) 124 N = 1 928 544 12

(15, 3) 222 N = 1 64 32 2

(15, 3) 160 N = 1 160 32 4

(15, 3) 138 N = 1 928 16 19

(15, 3) 132 N = 1 832 64 23

(15, 3) 129 N = 1 928 124 33

(15, 3) 126 N = 1 928 128 24

(15, 3) 123 N = 1 928 304 23
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Hodge numbers Heterotic d = 4 Boundary States

(h11, h12) Singlets Susy Maximum Minimum Distinct

(15, 3) 120 N = 1 976 736 8

(3, 15) 222 N = 1 64 32 2

(3, 15) 160 N = 1 64 32 2

(3, 15) 138 N = 1 416 16 13

(3, 15) 132 N = 1 608 32 17

(3, 15) 129 N = 1 736 124 23

(3, 15) 126 N = 1 736 64 17

(3, 15) 123 N = 1 736 248 17

(3, 15) 120 N = 1 784 544 8

(12, 6) 129 N = 1 848 62 24

(12, 6) 126 N = 1 848 148 30

(12, 6) 123 N = 1 848 304 18

(12, 6) 120 N = 1 848 688 6

(6, 12) 129 N = 1 752 62 20

(6, 12) 126 N = 1 752 112 24

(6, 12) 123 N = 1 752 272 15

(6, 12) 120 N = 1 752 592 6

(21, 21) 160 N = 2 1600 16 15

(21, 21) 148 N = 2 1760 80 16

(21, 21) 144 N = 2 2240 16 31

(21, 21) 140 N = 2 2560 64 43

(21, 21) 136 N = 2 3392 256 34

(19, 19) 242 N = 1 1280 32 15

(19, 19) 240 N = 1 1504 128 22

(19, 19) 238 N = 1 1760 416 14

(19, 19) 208 N = 1 1504 128 14

(19, 19) 206 N = 1 1760 448 13

(19, 19) 204 N = 1 2272 1472 7

(19, 19) 180 N = 1 1472 128 14

(19, 19) 178 N = 1 1696 320 12

(19, 19) 176 N = 1 1952 128 21

(19, 19) 174 N = 1 1760 416 12

(19, 19) 172 N = 1 2272 1280 5

(15, 15) 270 N = 1 448 32 16

(15, 15) 240 N = 1 832 128 18

(15, 15) 234 N = 1 448 32 9

(15, 15) 216 N = 1 992 128 15

(15, 15) 213 N = 1 992 172 22

(15, 15) 212 N = 1 832 64 16
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Hodge numbers Heterotic d = 4 Boundary States

(h11, h12) Singlets Susy Maximum Minimum Distinct

(15, 15) 200 N = 1 1024 64 22

(15, 15) 198 N = 1 1184 392 16

(15, 15) 190 N = 1 992 128 16

(15, 15) 189 N = 1 1312 536 10

(15, 15) 188 N = 1 1168 304 19

(15, 15) 184 N = 1 1024 64 15

(15, 15) 182 N = 1 1216 224 28

(15, 15) 180 N = 1 1568 1120 10

(15, 15) 169 N = 1 1216 152 23

(15, 15) 167 N = 1 1568 440 21

(15, 15) 166 N = 1 1216 224 29

(15, 15) 164 N = 1 1568 896 17

(15, 15) 160 N = 1 1184 64 25

(15, 15) 158 N = 1 1360 208 20

(15, 15) 150 N = 1 1216 304 14

(15, 15) 148 N = 1 1568 800 18

(15, 15) 138 N = 1 1184 256 13

(15, 15) 136 N = 1 1360 896 6

(15, 15) 132 N = 1 1472 704 16

(13, 13) 230 N = 1 256 32 4

(13, 13) 192 N = 2 320 8 10

(13, 13) 172 N = 2 704 40 9

(13, 13) 160 N = 2 896 8 22

(13, 13) 156 N = 2 1024 64 29

(13, 13) 148 N = 2 1024 64 24

(13, 13) 144 N = 2 1184 8 28

(13, 13) 140 N = 2 1024 32 28

(13, 13) 136 N = 2 1184 256 17

(13, 13) 128 N = 2 1024 80 14

(13, 13) 120 N = 2 1216 16 31

(13, 13) 116 N = 2 1472 128 31

(13, 13) 112 N = 2 1472 32 36

(13, 13) 108 N = 2 1984 128 31

(13, 13) 104 N = 2 1984 896 12

(13, 13) 96 N = 2 448 32 11

(13, 13) 84 N = 2 1024 128 19

(13, 13) 80 N = 2 1216 32 18

(13, 13) 76 N = 2 1472 128 28
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Hodge numbers Heterotic d = 4 Boundary States

(h11, h12) Singlets Susy Maximum Minimum Distinct

(13, 13) 72 N = 2 1984 608 18

(11, 11) 238 N = 1 704 32 14

(11, 11) 226 N = 1 896 32 12

(11, 11) 224 N = 1 1120 128 16

(11, 11) 214 N = 1 832 128 19

(11, 11) 204 N = 1 832 128 16

(11, 11) 200 N = 1 704 32 17

(11, 11) 193 N = 1 1024 172 21

(11, 11) 192 N = 1 1120 64 23

(11, 11) 190 N = 1 1376 416 18

(11, 11) 180 N = 1 992 392 17

(11, 11) 176 N = 1 832 64 29

(11, 11) 174 N = 1 1024 304 20

(11, 11) 173 N = 1 800 86 26

(11, 11) 172 N = 1 800 64 13

(11, 11) 170 N = 1 832 32 25

(11, 11) 167 N = 1 704 124 18

(11, 11) 164 N = 1 1088 64 29

(11, 11) 162 N = 1 1312 320 13

(11, 11) 161 N = 1 800 124 25

(11, 11) 160 N = 1 1120 64 19

(11, 11) 159 N = 1 1376 440 21

(11, 11) 158 N = 1 1376 224 33

(11, 11) 156 N = 1 1888 896 18

(11, 11) 152 N = 1 992 160 22

(11, 11) 149 N = 1 1120 152 24

(11, 11) 148 N = 1 976 304 15

(11, 11) 146 N = 1 992 152 29

(11, 11) 143 N = 1 1024 86 40

(11, 11) 142 N = 1 1024 160 29

(11, 11) 140 N = 1 1376 784 18

(11, 11) 131 N = 1 1216 440 14

(11, 11) 130 N = 1 1312 128 27

(11, 11) 129 N = 1 1024 124 18

(11, 11) 128 N = 1 1568 896 12

(11, 11) 127 N = 1 1376 296 35

(11, 11) 126 N = 1 1376 224 23

(11, 11) 124 N = 1 1888 608 27

(11, 11) 120 N = 1 992 64 19
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Hodge numbers Heterotic d = 4 Boundary States

(h11, h12) Singlets Susy Maximum Minimum Distinct

(11, 11) 118 N = 1 1168 152 28

(11, 11) 114 N = 1 1024 16 21

(11, 11) 112 N = 1 1216 64 32

(11, 11) 108 N = 1 1376 608 18

(11, 11) 102 N = 1 1280 256 10

(11, 11) 100 N = 1 1504 896 5

(11, 11) 98 N = 1 1312 256 11

(11, 11) 96 N = 1 1568 704 13

(11, 11) 94 N = 1 1376 224 11

(11, 11) 92 N = 1 1888 800 11

(9, 9) 222 N = 1 128 32 3

(9, 9) 160 N = 1 736 296 14

(9, 9) 154 N = 1 736 296 12

(9, 9) 147 N = 1 704 124 18

(9, 9) 144 N = 2 128 32 3

(9, 9) 144 N = 1 704 296 11

(9, 9) 141 N = 1 704 124 17

(9, 9) 139 N = 1 976 368 14

(9, 9) 138 N = 1 832 64 30

(9, 9) 136 N = 1 976 784 6

(9, 9) 132 N = 1 736 32 24

(9, 9) 129 N = 1 832 124 29

(9, 9) 126 N = 1 976 128 35

(9, 9) 123 N = 1 976 272 27

(9, 9) 120 N = 1 976 608 11

(9, 9) 117 N = 1 896 86 16

(9, 9) 114 N = 1 896 152 21

(9, 9) 111 N = 1 896 392 9

(9, 9) 108 N = 1 896 800 4

(9, 9) 107 N = 1 976 296 20

(9, 9) 104 N = 1 976 608 9

(9, 9) 100 N = 2 352 40 8

(9, 9) 98 N = 1 896 112 32

(9, 9) 96 N = 2 896 16 26

(9, 9) 92 N = 1 896 640 7

(9, 9) 88 N = 2 1024 16 31

(9, 9) 84 N = 2 1024 32 33

(9, 9) 80 N = 2 1472 32 35

(9, 9) 76 N = 2 1184 64 25
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Hodge numbers Heterotic d = 4 Boundary States

(h11, h12) Singlets Susy Maximum Minimum Distinct

(9, 9) 72 N = 2 1472 608 11

(9, 9) 0 N = 4 4864 8 43

(7, 7) 184 N = 1 704 64 10

(7, 7) 174 N = 1 608 64 13

(7, 7) 168 N = 1 352 64 9

(7, 7) 166 N = 1 832 304 13

(7, 7) 156 N = 1 736 64 18

(7, 7) 153 N = 1 832 124 28

(7, 7) 150 N = 1 832 224 20

(7, 7) 144 N = 1 832 64 19

(7, 7) 140 N = 1 800 296 15

(7, 7) 134 N = 1 832 128 26

(7, 7) 133 N = 1 608 62 16

(7, 7) 132 N = 1 1184 688 15

(7, 7) 130 N = 1 608 8 25

(7, 7) 122 N = 1 1024 128 22

(7, 7) 119 N = 1 1184 304 27

(7, 7) 118 N = 1 800 224 14

(7, 7) 116 N = 1 1184 592 18

(7, 7) 112 N = 1 800 32 28

(7, 7) 110 N = 1 992 196 21

(7, 7) 109 N = 1 928 124 27

(7, 7) 108 N = 1 784 224 9

(7, 7) 106 N = 1 832 32 35

(7, 7) 104 N = 1 1024 784 8

(7, 7) 103 N = 1 832 62 38

(7, 7) 102 N = 1 800 128 9

(7, 7) 100 N = 1 1184 32 42

(7, 7) 97 N = 1 704 62 18

(7, 7) 94 N = 1 896 128 28

(7, 7) 91 N = 1 1024 304 21

(7, 7) 90 N = 1 1024 160 15

(7, 7) 88 N = 1 1024 608 13

(7, 7) 87 N = 1 1184 248 21

(7, 7) 84 N = 1 1184 592 17

(7, 7) 82 N = 1 992 160 15

(7, 7) 78 N = 1 976 152 21

(7, 7) 76 N = 1 992 800 4

(7, 7) 72 N = 1 1024 32 32
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Hodge numbers Heterotic d = 4 Boundary States

(h11, h12) Singlets Susy Maximum Minimum Distinct

(7, 7) 68 N = 1 1184 608 9

(7, 7) 60 N = 1 992 704 5

(7, 7) 56 N = 1 976 800 3

(5, 5) 160 N = 2 320 16 8

(5, 5) 152 N = 1 80 64 2

(5, 5) 148 N = 2 704 64 10

(5, 5) 144 N = 2 896 16 18

(5, 5) 140 N = 2 1280 32 28

(5, 5) 136 N = 2 1600 128 20

(5, 5) 112 N = 1 784 592 7

(5, 5) 99 N = 1 784 272 14

(5, 5) 96 N = 2 896 32 13

(5, 5) 96 N = 1 784 592 6

(5, 5) 90 N = 1 736 148 17

(5, 5) 86 N = 1 784 112 15

(5, 5) 84 N = 2 1024 64 22

(5, 5) 84 N = 1 736 608 5

(5, 5) 83 N = 1 784 272 12

(5, 5) 80 N = 2 1472 8 25

(5, 5) 80 N = 1 784 592 5

(5, 5) 77 N = 1 704 62 18

(5, 5) 76 N = 2 1792 128 30

(5, 5) 74 N = 1 704 148 13

(5, 5) 72 N = 2 2624 8 33

(5, 5) 71 N = 1 704 296 9

(5, 5) 68 N = 1 736 32 19

(5, 5) 64 N = 2 608 64 11

(5, 5) 62 N = 1 736 152 11

(5, 5) 56 N = 2 704 16 22

(5, 5) 56 N = 1 736 704 2

(5, 5) 52 N = 2 1088 40 29

(5, 5) 48 N = 2 1088 32 28

(5, 5) 44 N = 2 1600 64 26

(5, 5) 40 N = 2 1600 8 31

(5, 5) 36 N = 2 1024 32 31

(5, 5) 32 N = 2 832 32 9

(5, 5) 28 N = 2 1024 32 31

(5, 5) 24 N = 2 1408 32 28

(5, 5) 20 N = 2 1664 128 26
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Hodge numbers Heterotic d = 4 Boundary States

(h11, h12) Singlets Susy Maximum Minimum Distinct

(5, 5) 16 N = 2 1984 32 23

(5, 5) 12 N = 2 1792 128 26

(5, 5) 8 N = 2 2624 608 14

(3, 3) 210 N = 1 320 32 7

(3, 3) 176 N = 1 704 128 11

(3, 3) 148 N = 1 704 64 9

(3, 3) 144 N = 1 608 64 11

(3, 3) 142 N = 1 992 224 20

(3, 3) 126 N = 1 608 224 7

(3, 3) 114 N = 1 928 224 15

(3, 3) 113 N = 1 640 124 14

(3, 3) 110 N = 1 992 256 15

(3, 3) 108 N = 1 1504 544 18

(3, 3) 104 N = 1 608 32 16

(3, 3) 98 N = 1 704 16 13

(3, 3) 92 N = 1 992 544 13

(3, 3) 86 N = 1 896 256 8

(3, 3) 82 N = 1 928 128 10

(3, 3) 80 N = 1 1184 592 11

(3, 3) 79 N = 1 992 248 19

(3, 3) 78 N = 1 992 224 9

(3, 3) 76 N = 1 1504 544 17

(3, 3) 70 N = 1 800 148 20

(3, 3) 69 N = 1 736 124 12

(3, 3) 64 N = 1 832 64 23

(3, 3) 63 N = 1 608 62 17

(3, 3) 60 N = 1 992 32 24

(3, 3) 52 N = 1 1120 608 8

(3, 3) 51 N = 1 832 248 14

(3, 3) 48 N = 1 1184 592 10

(3, 3) 47 N = 1 992 304 12

(3, 3) 44 N = 1 1504 704 7

(3, 3) 42 N = 1 800 128 12

(3, 3) 38 N = 1 784 112 13

(3, 3) 36 N = 1 832 64 16

(3, 3) 32 N = 1 800 32 15

(3, 3) 24 N = 1 1088 704 3

(3, 3) 20 N = 1 1120 800 3

(3, 3) 16 N = 1 1184 608 5
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Hodge numbers Heterotic d = 4 Boundary States

(h11, h12) Singlets Susy Maximum Minimum Distinct

(3, 3) 12 N = 1 1504 992 3

(1, 1) 144 N = 2 64 16 3

Table 2 : The full set of compactification manifolds found in this study.
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